
Trends
Although the exchange of genetic
material between lineages as diverse
as viruses and mammals has been
recognized for decades, particularly
through the analysis of genomic data-
sets, it has remained an active debate
as to whether such exchanges can
lead to adaptive evolution.

Recently, the growing wealth of exam-
ples of genetic transfer involving
organisms from all domains of life
has provided the means to test the
hypothesis of adaptive genetic
exchange. The repeated testing of this
hypothesis has revealed not only
adaptive effects among viral and pro-
karyotic lineages but also for plants,
animals, and fungi. Indeed, the data
now available indicate how profoundly
important ancient and more recent
gene exchange has been in the evolu-
tion of even humans.

Adaptive evolutionary diversification
can now be seen as being often facili-
tated by the addition of standing
genetic variation from one divergent
lineage to another.
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Genetic exchange between divergent evolutionary lineages, from introgressive
hybridization between locally adapted populations to insertion of retroviral
sequences into eukaryotic genomes, has now been documented. The detection
of frequent divergence-with-gene-flow contrasts the neo-Darwinian paradigm
of largely allopatric diversification. Nevertheless, of even greater significance is
the growing wealth of data suggesting that the recipients of the transferred
genomic material gain adaptive phenotypes from the donor lineages. This
adaptive enrichment is reflected by changes in pathogenicity in viruses and
bacteria, the transformation of ecological amplitude in eukaryotes, and adap-
tive radiations in extremely diverse lineages. Although genetic exchange may
produce maladaptive consequences, most of the recently reported examples
suggest increases in fitness, and many such adaptive trait transfers have been
identified in our own species.

Genetic Exchange Affects Adaptive Evolution: It Is Time to Move On
When Edgar Anderson stated ‘The more imperceptible introgression becomes, the greater its
biological significance’, and ‘thewidedispersalof introgressive genes (perceptibleonly to themost
exquisitely precise techniques) would be a phenomenon of fundamental importance’ [1], he was
not only predicting the evolutionary significance of genetic exchange but also the type of method-
ologies that would be needed to demonstrate this significance. Anderson and colleagues such as
Ledyard Stebbins predicted a significant contribution of introgressive hybridization [2] to adaptive
evolution and biodiversification. In the past decade this prediction has been amply validated with
extensivegenomicdatasetsanddiverseadaptations inall knownmicrobialandmetazoan lineages
[3–5].Thelong-controversial ‘divergence-with-gene-flow’ [6]hasalsobeendemonstrated inmany
organisms. Furthermore, genetic exchange between all manner of organisms, reflecting an
abundance of avenues such as sexual reproduction, parasitism, viral reassortment, and trans-
duction is now known to have contributed to the evolution of genomes, adaptations, and entire
organismic clades [7]. Thus, the field of evolutionary biology can now move past the question of
whether or not evolutionary lineages can originate and diverge whileundergoing genetic exchange
with closely or distantly related organisms. Instead, we should consider the questions (i) how does
genetic exchange affect fitness in recipient population(s) [7], and (ii) what roles do the genetic
architectures of adaptation, linkage, and selection play in the short- and long-term evolutionary
dynamics of introgressed genetic and phenotypic elements (Box 1)? This shift in focus requires a
muchmoredynamicandcomplexmodelofevolutionarychange,onethat includesacentral role for
‘standing genetic variation’ arising from admixture between divergent lineages [8].
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Box 1. Recombination, Selection, and the Success and Persistence of Adaptive Introgressions

It may be argued that the success of introgressed adaptive traits (including genes and alleles) and the persistence of
maladaptive traits depend on the specific trait, ecological parameters, and the strength of selection. Although this may
be true (Tables S1 and S2 in the supplemental information online), in evolutionary terms this boils down to four
parameters: (i) the rate of hybridization and/or introgression [56,57], (ii) the rate of recombination [58,59], (iii) the nature of
genetic dominance [60,61], and (iv) the strength of selection [58]. A high rate of hybridization and little opportunity for
recombination and selection may lead to flooding of the recipient genome with maladaptive traits. By contrast, a low rate
of hybridization, coupled with an opportunity for recombination and selection, will lead to subsequent incorporation of
adaptive traits while purging maladaptive traits in the recipient populations and genomes (following the mechanism of
Kondrashov’s hatchet [62]). An excellent example of both adaptive and non-adaptive outcomes is the Soay sheep [28].
In this case, the adaptive light coat color was introgressed from domesticated varieties recently introduced to the island
habitat. At the same time, maladaptive coat patterning associated with lowered survivorship was also introgressed, but
its frequency decreased over a few dozen generations. Thus, maladaptive introgression was purged over time while
retaining adaptive introgression, aided by recombination and selection. This is not possible if introgression is continuous
or frequent, recombination is rare, and selection is relatively weak.

If recombination and selection lead to retention of only adaptive introgressed traits, our ability to detect maladaptive
introgression will deteriorate with time. At shorter time-intervals, it may appear that maladaptive introgression is rampant
while adaptive introgression is rare, as judged from many recent cases of introgression between invasive and native
species, or between domesticated and wild species or varieties [53,54,63]. However, over longer time-periods, as a
result of recombination and selection (or extinction), only adaptive introgression will remain evident. Indeed, most
instances of genetic exchange – whether ancient, recent, or current – show adaptive outcomes, but the maladaptive
genetic exchanges are almost exclusively attributable to recent genetic exchange. Thus, a challenge for future studies
will be to document the relative proportions, actions, and evolutionary trajectories of adaptive and maladaptive traits
introgressed as a result of recent bouts of hybridization, where it is possible to study early stages of introgression,
recombination, and selection. This field is ripe for theoretical development but so far has been poorly explored. The
cheap and now widely accessible genomic technologies should make it possible to simultaneously test these ideas in
myriad empirical systems.
We summarize below our current understanding of adaptive genetic exchange with a selection
of prominent recent examples. Although Tables S1 and S2 in the supplemental material online
provide a wide array of studies reporting consequences from genetic exchange, because of
limited space we have essentially provided only a fraction of the examples of adaptive evolution
involving prokaryotic, viral, and eukaryote-to-eukaryote horizontal genetic transfers. We will
consider some of these examples in detail to illustrate (i) the diversity of phenotypic changes, (ii)
the similarity of the effects detected, (iii) the inference that genetic exchange not only contrib-
utes to increased fitness but may also result in maladaptation, and (iv) the types of future studies
that will clarify the role of genetic exchange in adaptive evolutionary processes.

Genomic Admixture and Reticulate Evolution Are Rampant
The Adaptive Genesis of Influenza Pandemics
Notwithstanding their mechanism of transmission, genomic constitution (i.e., ‘DNA’ or ‘RNA’
viruses), and the degree to which mortality accompanies infection, the majority of viral patho-
gens of humans are good examples of reticulate evolution. A novel methodology for inferring
evolutionary history revealed that whereas dengue and West Nile virus isolates show limited and
no indication of genetic exchange, respectively, HIV, influenza, and hepatitis C were marked by
extensive reticulation [9]. Such genetic exchange is directly involved in the ability of pathogens to
adapt to the immune systems of hosts. An excellent example is the ability of influenza viral
pathogens of humans to evolve rapidly and thus’ . . . evade immunity and reinfect previously
infected individuals’ [10]. The rapidity of this viral evolution within and across ‘flu seasons’
reflects the origin of new mutations within genes and the subsequent production of novel
combinations of the genes through viral reassortment [11]. Figure 1 illustrates the role of
repeated bouts of reassortment between divergent influenza genomes in the derivation of a
highly virulent form. The transition from an influenza virus with low pathogenicity in avian hosts to
a virulent human pathogen with 30% host mortality was also accompanied by resistance to
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Figure 1. The Admixed History of a Virulent Influenza. The progenitor lineage (i.e., ‘G570) of the human pathogenic
influenza, H7N9, evolved through reassortment events. The horizontal bars within each viral isolate represent the eight
influenza genes: PB2, PB1, PA, HA, NP, NA, M, and NS (top to bottom). Red and blue segments derive from G57 and other
influenza lineages, respectively. The arrows with broken tails indicate interspecific (i.e., host) gene transmission. The years
of occurrence of the various influenza types involved in the evolution of G57 are indicated along the right side of the figure.
The following acronyms are used in the delineation of each viral subtype: BJ, Beijing; Ck, chicken; Dk, duck; HK, Hong
Kong; HuN, Hunan; JS, Jiangsu; Qa, quail; SH, Shanghai; ST, Shantou; ZJ, Zhejiang. The two-digit number following the
acronyms for the host and place of origin indicates the year of appearance of the various influenza lineages [12]. Redrawn
from [12]; the image of the generic ultrastructure of the influenza virion was prepared by Dan Higgins, made available in
public domain under a copyright-free arrangement [Public Health Image Library (PHIL) of the Centers for Disease Control
and Prevention, Atlanta, GA, USA; https://phil.cdc.gov/phil/details.asp?pid=11823].
immunization [12]. This adaptive evolutionary transition required two coordinated processes of
antigenic evolution [mostly involving the hemagglutinin (HA) glycoprotein gene] and repeated
reassortment, thus unleashing viral evolution that, unfortunately for human hosts, resulted
in’ . . . novel reassortants with pandemic potential’ [12]. Further examples in Table S1 highlight
the fact that genetic exchanges and reticulate evolution are now known to be crucial for
adaptations in a broad range of organisms. Moreover, these examples highlight the fact that
adaptive genetic exchanges can take place in the absence of sexual reproduction not only in
prokaryotes but also via horizontal transfers even in more derived eukaryotes, for example,
through infections.

Genetic Exchanges Take Complex Forms and Produce Unexpected
Adaptive Outcomes
CRISPR Loci and Bacterial/Archaeal Immunity
Science magazine proclaimed CRISPR genome-editing technology its 2015 ‘Breakthrough of
the Year’ [13]. This pronouncement reflected the promise and ethical dilemma presented by
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this molecular tool as evidenced, for example, by the modification of DNA from human embryos
[14]. Nonetheless, as powerful as CRISPR will likely be for human-mediated genomic modifi-
cation, its natural setting and function within the cells of bacteria and archaea reflect a pervasive
impact for the biosphere as a whole.

The role played in nature by the ‘CRISPR/Cas systems’ – so named because of the often
adjacent locations of CRISPR sequence arrays and cas genes – is the provision of adaptive
immunity to bacteria and archaea species against viral infection [15]. When viral DNA invades a
bacterial or archaeal cell that contains the CRISPR/Cas system, the following cascade of
processes occurs: (i) the viral DNA molecule is fragmented; (ii) a portion of the fragmented DNA
is inserted as a ‘spacer’ into the CRISPR locus; (iii) the CRISPR locus, with new viral DNA
spacer, is transcribed and processed, resulting in mature crRNAs; (iv) the mature crRNAs form
a complex with Cas proteins; (v) the crRNA/Cas protein complex is compared with invading viral
DNA molecules to identify homology; and (vi) following recognition of complementarity with
invading viruses, the infecting DNA is degraded by nucleases produced by cas loci [15]. The
mechanism of genetic exchange in this adaptive process is both complex and ironic: com-
plexity is reflected by the utilization of gene products and DNA sequences from both the host
and pathogen to fight the infection; the irony is that the genome of the viral invader is
incorporated into that of the host and then used in return by the hosts to identify and destroy
further viral infections [15].

Genetic exchanges may take complex forms not only in host–pathogen dynamics (e.g., [16,17])
but also in symbiotic relationships (e.g., [18–20]), and facilitate protection from predators,
parasites, and parasitoids (e.g., [21,22]) (Table S2). They may also produce unexpected
adaptive outcomes from niche partitioning (e.g., [23,24]) to metabolic innovations (e.g.,
[19,25–27]), domestication (e.g., [28,29]), and sexual selection (e.g., [30–32]) (Table S2). Thus,
genetic exchanges have tremendously impacted on the complexity of evolution and diversifi-
cation of life on Earth, and they continue to play unexpected roles in natural species interactions
and in modern human survival and health.

Genetic Exchanges Contribute to Evolutionary Innovations and
Adaptive Radiations
Horizontal Transfer of Bacterial Tal Genes and the Evolution of Vascular Plants
The evolutionary innovations necessary for the origin and radiation of land plants from aquatic
progenitors included the ability to transport materials such as nutrients and water over long
distances within an organism. A key step in the evolution of vasculature of terrestrial plants was
the receipt, via an ancient horizontal gene transfer event, of transaldolase (Tal) genes from
Actinobacteria [33]. These genes, which affect the number and distribution of vascular bundles,
occur only in terrestrial plants and bacteria [33]. Furthermore, genomic analyses demonstrated
that the Tal genes underwent purifying selection following their transfer into terrestrial plants
[33]. Taken together, these findings suggest that the horizontal transfer of bacterial Tal loci into
early plants provided key genetic elements leading to the immense diversification of land plants.

Introgression and the Adaptive Evolution of Flower Color
Floral trait evolution within the Mimulus aurantiacus complex provides an excellent illustration of
how introgressive hybridization can drive adaptive diversification. Two subspecies of M.
aurantiacus (the yellow-flowered subspecies australis, and the red-flowered subspecies puni-
ceus) are partially reproductively isolated owing to differences in pollinator preferences associ-
ated with flower color [34]. Genomic and phylogenetic analyses demonstrated that (i) the red-
flowered phenotype is caused by cis-regulatory mutations in the MaMyb2 gene, (ii) MaMyb2
haplotypes in red-flowered but otherwise highly divergent subspecies are extremely similar,
suggesting a single evolutionary origin of red coloration, and (iii) there was discordance
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Figure 2. The Results of Introgressive Hybridization in Transferring Red Flower Color Alleles Between
Mimulus Clades. The introgression into M. puniceus is reflected in the discordance between the ‘subspecies phylogeny’
(left) and the haplotype network (right), made up of 53 unique MaMyb2 haplotypes from 76 individuals representing eight
subspecies. Circles reflect individual haplotypes, with the size being proportional to the observed frequency. The colors of
the haplotype circles relate to flower color and indicate either the presence or absence of anthocyanins, in other words red
or yellow coloration, respectively. The black circles indicate the number of mutational differences between the haplotypes.
The broken lines delineate haplotypes representing each of four major subspecies clades [34]. Image courtesy of Matt
Streisfeld [34], reproduced with permission..
between the taxonomy (i.e., ‘subspecies phylogeny’) and the haplotype network recovered
from eight subspecies [34] (Figure 2). This is a classic signature of an adaptive phenotype–
genotype spreading from a single origin into divergent lineages as a result of introgressive
hybridization.

Introgression, Beak Shape, and Adaptive Evolution in Darwin’s Finches
Although genomic data abundantly reveal adaptive trait transfer in all major organismic clades
(Table S1), few studies have tested this inference using cross-generational ecological data. One
remarkable exception is the 40 year research endeavor by Peter and Rosemary Grant and their
colleagues on Darwin’s finches of the Galápagos archipelago and Cocos Island. Aside from
testing a wide array of evolutionary and ecological hypotheses, this work has provided arguably
the clearest example of genetic exchange-mediated adaptive evolution [35].

The morphological traits most often described in studies of the Darwin’s finch species are beak
shape and size [35], which prominently affect fitness through foraging efficiency [36]. Introgressive
hybridization throughout multiple bouts of climatic perturbations has increased foraging-related
standing genetic variation and provided the basis for adaptation of beak morphology in Darwin’s
finches [36] (Figure 3). The transcription factor gene ALX1 controls craniofacial development and
differentiation, and is a key developmental genetic regulator of beak diversity within and between
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Figure 3. The Evolution of Beak Morphology and Foraging Efficiency of Darwin’s Finches Is Mediated
Through Climatic Perturbations, Followed by Introgressive Hybridization and Natural Selection. A male
medium ground finch (Geospiza fortis) living on Daphne Major Island, Galápagos, is illustrated below, and the beak
morphology of the female is illustrated in the top right corner. The data illustrate the evolution of G. fortis beak size over a 40
year study. The mean values, together with the 95% confidence limits, reflect the entire population of G. fortis in each year,
and the parallel horizontal lines indicate the 95% confidence limits on the mean value from the 1973 population [36]. The
beak size fluctuated in response to food availability related to climatic perturbations, through which fitness was maintained
with the aid of repeated adaptive hybrid introgressions of the transcription factor gene ALX1. This gene controls beak
development and differentiation, influencing diversification of beaks among Darwin’s finches and hence their expanded
utilization of food resources [37]. Image courtesy of Peter Grant, reproduced with permission.
finch species [37]. The adaptive craniofacial features of the finches and the introgression of ALX1
across populations and species suggested that ‘Natural selection and introgression affecting this
locus have contributed to the diversification of beak shapes among Darwin’s finches and hence to
their expanded utilization of food resources . . . ’ [37].

These three examples (also Table S1b) highlight the fact that genetic exchange involving key
genetic elements and eco-morphological innovations can be a frequent driver of adaptive
radiations in prominent organismal groups.

Genetic Exchange, Mammalian Evolution, and Human Adaptations
Endogenous Retroviruses and the Evolution of Mammals
Genetic exchange has strongly influenced the evolution and biology of mammals. An important
exampleentails theenvelopeprotein genes,known assyncytins,which perform anessential role in
placentation and which were acquired from retroviruses early in the radiation of marsupial and
eutherian clades [38]. Retroviral insertions into mammalian genomes have conferred other crucial
adaptations. Recent genomic and functional analyses have documented effects from retroviral
insertions on the regulation of innate immunity in a diverse array of mammals, including humans
[16]. These retroviral sequences have been inserted into binding sites associated with the
proinflammatory cytokine interferon-g (IFNG) [16]. Interferon molecules contribute to innate
immunity by controlling the transcription of a network of genes [16]. The evolution of IFNG
regulation, and thus a key component of innate immunity across mammalian lineages, involved
independent infection and cooption of the gammaretrovirus, MER41 [16]. This virus-to-mammal
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Figure 4. The Taxonomic Distribution and Estimated Age of Cooption of the Endogenized Gammaretrovirus
MER41 into Various Mammalian Genomes [16]. These retroviral sequences were incorporated through multiple,
independent infections in the binding sites associated with proinflammatory cytokine interferon-g (IFNG) [16], which have
conferred innate immunity to their mammalian recipients. This is a surprising example of how incorporation of genes from
an originally foreign entity in what are normally antagonistic associations could increase the fitness of the recipient
genomes. Redrawn from [16].
genetic exchange apparently provided’ . . . a dynamic reservoir of IFN-inducible enhancers
fueling genetic innovation in mammalian immune defenses’ [16] (Figure 4).

Homo sapiens as a Receptacle of Archaic Adaptations
Garrigan and Kingan [39] hypothesized, given introgression from now-extinct species of Homo
into Homo sapiens, that ‘the expanding anatomically modern human population [may have]
acquired locally adapted genetic variants from endemic archaic populations.’ Their hypothesis
of adaptive trait transfer has now been repeatedly substantiated by whole-genome data from
extinct Homo species and population genomics data from H. sapiens [40–48]. Some of the
introgressed regions appear to be associated with maladaptive phenotypes in modern H.
sapiens, especially with regard to associations with diseases (e.g., prostate cancer and type 2
diabetes) [47,48]. However, a portion of the allelic variation received by humans from their
congeners appears to provide locally adaptive phenotypes, such as innate immunity, response
to UV radiation, response to limited oxygen, spermatogenesis, and skin/hair characteristics
[40–48].

An example of adaptive trait introgression into humans from Denisovans involved the response
to hypoxic environments in extreme altitudes. Resequencing of the genomic interval containing
the hypoxia pathway gene, EPAS1, in 40 Tibetan and 40 Han Chinese individuals, as well as
comparison of genomic variation at this locus in global samples of humans, revealed positive
selection providing adaptations to high altitudes in Tibetan populations [46]. Significantly, the
pattern of variation at this locus indicated that the novel genomic characteristics resulted from
the introgression of EPAS1 alleles from the Denisovan lineage into humans [46]. As predicted by
Garrigan and Kingan [39], the signature of strong, positive selection for the alleles in Tibetan
populations suggested ‘that admixture with other hominin species . . . provided genetic
variation that helped humans to adapt to new environments’ [46]. The introgressed Denisovan
‘core haplotype’ that provides Tibetans with adaptations to hypoxic environments also occurs
in humans living above 2000 m in the Himalaya, but is absent in lowland populations [49].
Trends in Ecology & Evolution, August 2017, Vol. 32, No. 8 607



Have Genetic Exchanges Sometimes Been Maladaptive?
A Historical Perspective
A common assumption emerged during the Modern Synthesis (ca 1930–1950) that genetic
exchange, in the form of natural hybridization, was almost always maladaptive. This assumption
was as much a philosophical as a scientific stance, reflecting the viewpoint of ‘species’ as
sacrosanct units that kept their ‘purity’ or genetic integrity by avoiding reproduction with other
divergent forms [7]. Notwithstanding the non-scientific essence of this assumption, one may
characterize some genetic exchanges as potentially contributing to reduced fitness. To
underscore this point, Table S1 includes examples of maladaptive consequences for individu-
als, populations, and species. Specifically, although extensive horizontal transfer of mitochon-
drial sequences among species from the Saccharomycetaceae has been detected, signatures
of selective constraints suggest the removal of deleterious, chimeric haplotypes [50]. In humans
and koalas, the insertion of sequences from infectious retroviruses has catastrophic conse-
quences on their immune systems, thus leading to vastly reduced fitness in affected individuals
[51,52]. Introgression from archaic species of Homo into modern humans may also have
resulted in maladaptation for humans, as shown by the presence of some archaic alleles that
are associated with disease risk [47,48]. It is possible to find many more examples of
maladaptive introgression in contemporary populations of animals and plants, and this has
special relevance with respect to invasive species, genetic assimilation, and survival or persis-
tence of native biodiversity [7,53–55]. Thus, the traditional assumption that hybridization leads
to maladaptive introgression has some merit. However, the ample evidence for adaptive
genetic exchanges presented so far (also Table S1) argues for carefully assessing short-
versus long-term evolutionary dynamics of introgression of adaptive and maladaptive geno-
types and phenotypes (Box 1).

Separating Milk from Water: Adaptive or Maladaptive Introgression?
While we believe that the ‘maladaptive’ genetic exchanges listed in Table S1 indeed reflect the
introgression of maladaptive genetic variations, we must point out the likelihood that some of
these variations may actually be ‘post-reproductive age’ effects, for example retrovirus inser-
tions in humans and koalas [51,52]. Furthermore, current deleterious effects from introduced
alleles may mask an earlier or cycling adaptive role. For example, the contribution of some
introgressed alleles from archaic Homo to diseases in H. sapiens [47,48] may well reflect the
radical lifestyle changes in modern humans (e.g., diet) rather than continuous maladaptive
effects from the time of their introduction. Thus, it is essential to properly assess fitness
consequences of introgressed phenotypes, considering the natural history of organisms under
appropriate ecological conditions, and by taking a longer evolutionary perspective.

Adaptive and Maladaptive Introgression in the Soay Sheep
The Soay sheep of the St. Kilda archipelago of Scotland suitably illustrates the mixed fitness
effects of introgressive hybridization, and the importance of studying long-term evolutionary
consequences. Though this early sheep breed has been living free for up to 4000 years on
islands within this archipelago, and is phenotypically similar to wild species such as the Mouflon
(Ovis aries), it is not reproductively isolated from recent domesticates [28]. The lack of
reproductive isolation led to introgressive hybridization when domesticated sheep were
recently introduced to the islands. In particular, the adaptive effects from the introgression
of alleles from the introduced Dunface breed into the wild Soay sheep that determine either coat
color or the patterning of coat color were inferred by combining a 25 year ecological study with
data from a population genomics analysis [28]. The comparison of the ecological and genomic
data detected the action of both positive and negative selection on the introgressed alleles in
the Soay sheep. The selectively favored coat color phenotype (i.e., ‘light’) in the Soay sheep
resulted from adaptive introgression of Dunface alleles at the TYRP1 locus [28]. By contrast, the
introgressed alleles at the ASIP locus that cause a domesticated coat patterning phenotype
608 Trends in Ecology & Evolution, August 2017, Vol. 32, No. 8



Outstanding Questions
It is now well established that transfer
of genes between divergent lineages
can affect fitness. However, can such
fitness perturbations lead to adaptive
evolution in every type of organism – or
are there limitations on such effects
because of the biological attributes
of the recipients? For example, is it
due to a lack of data testing for lower
fitness, or are prokaryotic species
more likely to have fitness increases
due to genetic exchange?

Although examples of adaptive
exchange events have been docu-
mented in viruses, prokaryotes, and
eukaryotes, what is the proportion of
gene transfers that have no effect on
fitness (i.e., are neutral), reduce the
fitness, or increase the fitness of the
recipient?

Is the likelihood of a neutral, maladap-
tive, or adaptive outcome related in
any way to the type of molecular
mechanism of exchange (i.e., viral
reassociation, horizontal gene transfer,
introgressive hybridization)?
were associated with lowered survivorship in the Soay sheep, resulting in a decrease over time
in the frequency of the domesticated alleles [28]. Overall, this analysis confirmed the expecta-
tion that introgression among divergent lineages can give rise to evolutionary novelty, but with a
portion of the novelty contributing to a maladaptive phenotype.

Concluding Remarks
The traditional view that introgressive hybridization is either absent or rare, and usually
maladaptive, is incompatible with the overwhelming evidence for adaptive genetic exchange
mounted in the past two decades in a multitude of organisms showing variable evolutionary
divergence. These findings, summarized above and in Tables S1 and S2, show that:

(i) The mechanisms of genetic exchange are diverse, and they may be independent of sexual
reproduction, as demonstrated in a wide array of viruses, prokaryotes, and eukaryotes
(Tables S1 and S2).

(ii) Genetic exchanges can sometimes lead to phenotypic innovations and evolutionary novel-
ties that may affect diversification and niche evolution in adaptive radiations (Figures 3 and 4).

(iii) Genetic exchanges can take complex forms, which may produce a variety of adaptive and
non-adaptive consequences (Tables S1 and S2).

(iv) Simultaneous introgression of both adaptive and maladaptive traits is possible, which should
lead to conflicting selection pressures on the introgressed alleles at short timescales. This may be
resolved at longer timescales as a result of recombination and selective retention of adaptive traits,
whether they involve monogenic or polygenic traits, and/or multiple traits (Box 1).

The well-known mantra for buying and selling real estate is ‘location, location, location’. In that
spirit, a chant for the current topic would be ‘fitness estimates, fitness estimates, fitness
estimates’. Whether through manipulative ecological analyses or population genetic tests of
selection on genomic datasets, it is essential to test fitness effects in mosaic genomes resulting
from a variety of genetic exchanges (see Outstanding Questions). Such analyses should now be
seen as testing fundamentally important evolutionary hypotheses about the mode and tempo of
adaptive genetic exchanges at variable timescales, and their impact on morphological diversi-
fication and species radiations. As more and more data appear that reflect adaptive genetic
exchanges, we predict that demonstrations of how viral reassortment, horizontal gene transfer,
and introgressive hybridization have influenced standing genetic variation, recombinational
potential, and the adaptive landscape itself across the web of life will likewise multiply.
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Table S1a. Examples of adaptive genetic exchange in viral, prokaryotic and eukaryotic assemblages where the exchange is mediated by non-

sexual reproduction (i.e. viral recombination and horizontal gene transfer). (All reference numbers in supplementary tables have a ‘S’ prefix). 

 

Organism (donor) Organism (recipient) Genomic Region Involved Trait Affected Effect on Recipient References 

 VIRUS     
Influenza A Influenza A Haemagglutinin/Neuraminidase Resistance to host immunity Adaptive [1,2]

Bacteria Cafeteria roenbergensis virus (CroV) Multiple Carbohydrate metabolism Adaptive [3]

      

 BACTERIA/ARCHAEA     
Bacteriophage Archaea/Bacteria CRISPR loci Immune system Adaptive [4]

Vibrio sp. Vibrio parahaemolyticus T3SS2 Infectivity Adaptive [5]

Escherichia coli Escherichia coli Multiple Antibiotic resistance Adaptive [6]

Prochlorococcus Prochlorococcus Multiple Niche partitioning Adaptive [7]

Cyanobacteria Proteobacteria BchL-N-B protein genes Photosynthesis Adaptive [8]

      
 PROTO-EUKARYOTE     
Bacteria Proto-eukaryote Multiple Multiple Adaptive [9]

Alphaproteobacteria Proto-eukaryote Mitochondria Multiple Adaptive [9]

      

 EUKARYOTE – amoeboids     
Firmicute bacteria Mastigamoeba, etc.* Pfl/Pfla ATP production Adaptive [10]

      

 EUKARYOTE – fungi     

Bacteria Microsporidia TK genes Nucleic acid synthesis/salvage Adaptive [11] 
T. microellipsoides Saccharomyces FOT genes Oligopeptide transport Adaptive [12]

Saccharomycetaceae Saccharomycetaceae Mitochondrial genes Multiple Adaptive/maladaptive [13]
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 EUKARYOTE – protist     
Bacteria 
 

Mastigamoeba Multiple Hydrogenosomal metabolism Adaptive [14] 

 EUKARYOTE – plant     
Eubacteria Galdieria (red alga) Multiple Urea hydrolysis Adaptive [15]

DNA virus Bigelowiella (alga) Multiple Defense against infection Adaptive [16]

Actinobacteria Land plants TAL genes Plant vascular development Adaptive [17]

Hornworts Ferns Neochrome gene Growth in low light Adaptive [18]

      
 EUKARYOTE – animal     
Bacteria Animals** Multiple Cell-cell signaling Adaptive [19]

Bacteria Aiptasia (sea anemone) Multiple Multiple Adaptive [20] 

Bacteria Globodera (nematode) Glycosyl Hydrolase genes Parasitism Adaptive [21] 

Bacteria Brugia (nematode) BmFeCH gene Heme biosynthesis Adaptive [22] 

Fungi Arthropods Carotenoid biosynthesis genes Multiple Adaptive [23,24] 

Bacteria Hypothenemus (beetle) HhMAN1 Polysaccharide hydrolysis Adaptive [25] 

Polydnaviridae Parasitoid wasps Multiple Ability to parasitize hosts Adaptive [26,27] 

Microsporidia Parasitoid wasps GH19 chitinase gene Venom Adaptive [11] 

HIV-1 Humans Multiple Disease Susceptibility Maladaptive [28] 

Endogenous retrovirus Mammals Multiple Innate Immunity Adaptive [29] 

Koala Retrovirus Koala Multiple Disease Susceptibility Maladaptive [30] 

 

*Transfers detected in a number of anaerobic eukaryotes 

**Transfers detected in numerous animal clades including invertebrates and vertebrates 
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Table S1b. Examples of adaptive genetic exchange in eukaryotic assemblages where the exchange is mediated by sexual reproduction (i.e. 

“introgressive hybridization” or “introgression” [23]). 

 

Organism (donor) Organism (recipient) Genomic Region Involved Trait Affected Effect on Recipient References

 FUNGI     
Saccharomyces Saccharomyces MEP2 gene Ammonium permease Adaptive [31]

      
 PLANT     

Arabidopsis Arabidopsis Multiple Growth on serpentine soils Adaptive [32]

Helianthus Helianthus Multiple Female/Male fitness Adaptive [33] 

Solanum Solanum Cf-4/NL locus Pathogen resistance Adaptive [34] 

Cultivated rice Wild rice Multiple Domestication traits Adaptive [35] 

Iris fulva Iris brevicaulis Multiple Flooding tolerance Adaptive [36] 

Mimulus Mimulus MaMyb2 gene Flower color Adaptive [37] 

Senecio Senecio RAY locus Flower-head development Adaptive [38] 

Populus Populus Multiple Multiple Adaptive [39] 

Pachycladon Pachycladon Glucosinolate hydrolysis genes Herbivore resistance Adaptive [40] 

      

 ANIMAL – ADAPTIVE 
RADIATIONS 

    

Animals*** Animals*** Multiple Multiple Adaptive [41] 

      

 ANIMAL – MOLLUSCS     

Mytilus Mytilus Multiple Multiple Adaptive [42,43] 

      

 ANIMAL – INSECTS     

Anopheles Anopheles 2La Resistance to dry environments Adaptive [44] 

Drosophila Drosophila Mitochondrial genome Elimination of deleterious alleles Adaptive [45] 
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Limenitis Limenitis Multiple Batesian mimicry Adaptive [46] 

Heliconius Heliconius dennis and ray loci Müllerian mimicry Adaptive [47] 

Papilio Papilio Multiple Cold tolerance/mimicry Adaptive [48] 

Lycaeides Lycaeides Multiple High altitude niches Adaptive [49] 

      

 ANIMAL – ARACHNIDS     

Hogna Hogna Multiple Niche occupied Adaptive [50] 

      

 ANIMAL – FISH     

African cichlids African cichlids Multiple Feeding apparatus and others Adaptive [51] 

Gasterosteus Gasterosteus Multiple Anti-predation Adaptive [52] 

      

 ANIMAL – AMPHIBIANS     

Ambystoma Ambystoma Multiple Survivorship Adaptive [53,54] 

Lissotriton Lissotriton MHC loci Immune response Adaptive [55] 

Spea Spea Multiple Female mate choice Adaptive [56] 

Ranitomeya Ranitomeya Multiple Mimetic color Adaptive [57] 

      

 ANIMAL – BIRDS     

Zimmerius Zimmerius Multiple Plumage coloration Adaptive [58] 

Malurus Malurus Multiple Plumage coloration Adaptive [59] 

Manacus Manacus Multiple Plumage coloration Adaptive [60] 

Myzomela Myzomela Multiple Plumage coloration Adaptive [61] 

Geospiza Geospiza ALX1 gene Beak shape Adaptive [62] 

      

 ANIMAL – MAMMALS     

Mus spretus Mus musculus Vkorc1 gene Rodenticide resistance Adaptive [63] 

Mus musculus Mus musculus Y-chromosome Unknown Adaptive [64] 

Mus musculus Mus musculus Multiple Chemical communication Adaptive [65] 

Dunface sheep Soay sheep TYRP1 gene Coat color Adaptive [66] 
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Dunface sheep Soay sheep ASIP gene Coat pattern Maladaptive [66] 

Canis lupus Canis familiaris Multiple Survivorship in high latitudes Adaptive [67] 

Canis familiaris Canis lupus Mc1r gene Coat color Adaptive [68,69] 

Canis lupus Canis latrans Multiple Increased body size Adaptive [70] 

Homo sapiens Homo sapiens ERCC4 gene Response to UV light Adaptive [71] 

Denisovan Homo sapiens microRNA loci Unknown Adaptive [72] 

Denisovan Homo sapiens Toll-like receptor loci Innate immunity Adaptive [73] 

Denisovan Homo sapiens EPAS1 gene Hypoxia pathway Adaptive [74,75] 

Homo neanderthalensis Homo sapiens Toll-like receptor loci Innate immunity Adaptive [73] 

Homo neanderthalensis Homo sapiens SPATA45 and 18 genes Spermatogenesis Adaptive [76,77] 

Homo neanderthalensis Homo sapiens DPEP1 gene Metabolism Adaptive [78] 

Homo neanderthalensis Homo sapiens Multiple Skin and hair characteristics Adaptive [79] 

Denisovan/H. 
neanderthalensis 

Homo sapiens GBP4/GBP7 genes Innate immunity Adaptive [80] 

Homo neanderthalensis Homo sapiens Multiple Disease risk Maladaptive [79,81]

 

***Introgression contributing to adaptive variation during radiations in fish, birds and butterflies. 
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Table S2: The mode, timing and adaptive significance of genetic transfers (numbers shown are the number of times a particular kind of genetic 
exchange has been reported in the reviewed recent literature from Table 1). 
 

Mode of genetic 
transfer 

Donor Recipient Trait type 
Adaptive 
significance 

Timing of genetic 
exchange 

Genetic archit-
ecture of traits1 Adaptive value References2 

     Ancient Recent   Adaptive Maladaptive  

Non-sexual: 
(n=29)    Total . 26 8 

Pgen.: 27 
Mgen.: 2 

26 3  

 Micro3 
 

Micro 
 

 Total . 5 5 
Pgen.: 5 
Mgen.: 1 

5 0  

   Ecological immunity/resistance 
to host immunity 

1 2 Pgen.: 2 2  [1,2,4] 

    Infectivity/antibiotic 
resistance 

2 2 Pgen.: 1 
Mgen.: 1 

2  [5,6] 

    Niche partitioning 1 1 Pgen.: 1 1  [7,50] 
    Photosynthesis 1  Pgen.: 1 1  [8] 

 Micro Eukar  Total . 18 1 Pgen.: 16 19 0  

   Cellular processes Metabolism 12  Pgen.: 12 12  [3,9,10,12,14,15,20–
22,26] 

   Ecological Immunity/defense 4 1 Pgen.: 4 4  [16,22,23,29,41] 
    Infectivity/parasitism 3  Pgen.: 3 3  [24,26,27] 
    Symbiosis 3  Pgen.: 3 3  [9,10,22] 

 Eukar Eukar  Total . 5 0 
Pgen.: 4 
Mgen.: 1 

5 1  

   Cellular processes Metabolism 3  Pgen.: 3 3 1 [13,21,23,24] 
    Cellular signaling 1  Pgen.: 1 1  [19] 
   Ecological Growth 1  Mgen.: 1 1  [18] 
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Sexual (n=51) 

   Total . 39 32 
Pgen.: 40 
Mgen.: 10 

47 3  

   Ecological Total . 31 22 
Pgen.: 29 
Mgen.: 10 

36 3  

    Adaptation to 
habitat/environment 

12 8 Pgen.: 13 
Mgen.: 2 

14 1 [36,39,42,43,48–
51,53,54,56,67,71,74,7
5,79,82] 

    Growth 1 3 Pgen.: 2 
Mgen.: 1 

3  [31,32,70] 

    Domestication 3 5 Pgen.: 1 
Mgen.: 3 

4 1 [35,66–69] 

    Parasite/herbivore 
resistance, immunity 

6 3 Pgen.: 6 
Mgen.: 2 

6 1 [34,55,63,76,79–81] 

    Predator escape 5 2 Pgen.: 5 5  [46–48,52,57,83] 
    Foraging/metabolism 4 1 Pgen.: 2 

Mgen.: 2 
4  [51,62,78,82,84] 

   Sexual/reproductive/
social 

Total . 8 10 Pgen.: 11 11 0  

    Fitness 3 4 Pgen.: 5 5  [33,65,76,77,85,86] 
    Mate choice 5 6 Pgen.: 6 6  [56,58–61,65] 

 
1 Pgen=polygenic, Mgen=monogenic 
2 The number of examples does not total up because some examples may be included in more than one category and classifications. 
3 Micro=bacteria, virus and archea, Eukar=eukaryote. Donors and recipients are not mentioned for sexual genetic transfers since all genetic 
transfers here are between closely related taxa, i.e., populations of a species or among congenerics. 
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